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EXECUTIVE SUMMARY 

This report is part of a research thrust on commercial off-the-shelf (COTS) airborne electronic 
hardware (AEH) assurance methods that addresses the “safe operation” aspect of certification and 
promotes the development of a comprehensive framework for COTS assurance. This framework 
covers: 

• The understanding of current and foreseen future uses of COTS in AEH. 
• The description of related safety issues and concerns. 
• The documentation of failure modes and their relevance to an AEH context. 
• The investigation of existing mitigation techniques and their effectiveness. 
• The development of objective criteria for determining the effectiveness of safety. 
• The determination of airworthiness assurance methods for AEH integrating the COTS 

under consideration. 

This report applies the above focus points to embedded controllers (also called COTS 
microcontrollers). It also initiates the process of investigating the shortcomings of current 
assurance methods and the potential for remedies. Applicable assurance methods include system-
level guidelines within SAE/ARP4754A and SAE/ARP4761, software-level guidance in 
RTCA/DO-178C, and hardware-level guidance in RTCA/DO-254. Other assurance standards exist 
in other domains, particularly for road vehicle safety in ISO 26262, that recommend assurance 
processes applicable to microcontrollers. 

Microcontrollers cover a large spectrum of devices; this complicates the definition of an 
overarching method to determine how to apply assurance methods and which ones are applicable. 
Currently, the classification schemes are mostly based on hardware-related characteristics that may 
or may not impact the ability to perform a safety assessment in a manner consistent with the 
system-level assessment.  

This report focuses on microcontrollers embedded within COTS products, not only executing 
software but also providing so-called peripheral hardware functions. This distinction eliminates 
COTS controllers (i.e., not able to execute application software) and core processors alone  
(i.e., not providing peripheral hardware functions other than those necessary for interfacing outside 
the device, such as memory access controllers). Because of both technology capability and 
performance needs, the current trend is moving toward highly integrated core processors that 
embed on the same die the potentially multiple core processing, memories, and peripherals. 

Microcontroller manufacturers categorize their devices primarily by their technical performance 
in terms of number of hardware functions, core processing power capabilities, and other physical 
characteristics, such as electrical power consumption. However, the certification community using 
DO-254-based classification criteria addresses hardware characteristics as they relate to the notion 
of complexity; unfortunately, the notion of complexity inevitably suggests multiple interpretations. 
EASA certification memorandum SWCEH-001 further introduced the category of the highly 
complex microcontroller based on criteria related to the internal architecture of a device. This 
introduction further increased the range of interpretative material that would be required to 
determine an acceptable path to certification compliance. Beyond the mere assessment of COTS 
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microcontrollers’ characteristics, the relationship with the objectives of the development-
assurance process would require clarification. 

Therefore, the approach is to target the main objectives of a structured development process (i.e., 
ensuring the correct functional performance under all foreseeable conditions with no anomalous 
behavior). The aim is to return to certification basics of 14 CFR (i.e., 14 CFR 23/25/27/29.1301 
and 23/25/27/29.1309): intended functions that are fit-for-purpose, proper and safe functioning 
within aircraft operating conditions, and technical suitability supporting continued airworthiness. 
System-level safety assessments are then applicable to identify microcontrollers’ failure modes, 
analyze and classify their effects according to the applicable classification scheme (e.g., per AC 
25.1309), and evaluate existing failure mitigations. 

The automobile industry provides most of the verification results from fault injection in 
microcontrollers. The fault testing is performed at physical and logical levels, but rarely at the 
functional level at which the intended use is attached. The results indicate that most faults in 
microcontrollers manifest as bit-flips, justifying the most common mitigation technique to be error 
detection and correcting codes. Memory management units provide wider fault detection and 
recovery and are more and more embedded in microcontrollers. However, with respect to AEH for 
COTS in general and for complex or highly complex COTS microcontrollers in particular, design 
data are not available, at least to the level necessary to provide sufficient development assurance 
commensurate with the expected usage. 

This report provides recommendations for assurance process for COTS microcontrollers. An a-
priori classification could be determined by (1) taking into account the criticality (from the 
allocated development assurance level), and (2) on the basis of an assessment of both the device 
characteristics and its target usage domain. The notion of independence between the processing 
core (performing purely software functions) and the other peripheral hardware functions can 
inform on the potential applicability and scope of system-level safety assurance combined with 
software-level assurance (when independence claim cannot be formally justified), or hardware-
level assurance only (with justified independence claims). In other words, the challenge is to 
discern among miscellaneous considerations, whether or not a COTS microcontroller can be 
assured at system-level, possibly with the help of software, and, if not, how hardware-level 
assurance only can be achieved. In the latter case, collecting all available artifacts in a structured 
manner could provide acceptable assurance. For example, the definition and analysis of a device’s 
usage domain, together with its validation and verification, could allow a COTS microcontroller 
classified as complex or highly complex under current criteria to still be shown as mastered in 
terms of both adequate functioning and safe operation. For highly complex microcontrollers with 
allocated development assurance levels of A or B, additional assessments of potential 
dysfunctional behavior should be performed. Finally, the issue of documentation to support the 
required artifacts is no different from other COTS devices. The recommendation is to integrate the 
information from the available COTS artifacts into the development process to perform to the 
largest extent possible the traditional activities of a requirements-based approach (e.g., 
requirements capture, requirements validation, design data production, consistency of the overall 
process via traceability, implementation within the surrounding AEH, and performing 
requirements-based verification). 
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1.  INTRODUCTION 

1.1  BACKGROUND 

Commercial off-the-shelf (COTS) items are increasingly penetrating into both the commercial and 
the military segments of the aerospace market. Radio Technical Commission for Aeronautics 
(RTCA) standards, namely DO-254 “Design Assurance Guidance for Airborne Electronic 
Hardware” [1] and DO-178C “Software Considerations in Airborne Systems and Equipment 
Certification” [2], were developed with the issue of COTS assurance in mind. However, they did 
not recommend specific methods or objective criteria for safety assurance and airworthiness. 

In a general context of airworthiness, the focus is threefold: 

• Intended function (14 CFR 23.1301, 25.1301, 27.1301, and 29.1301)—Component 
selection from a functional standpoint and design to meet the function contribute to this 
aspect. 

• Operating conditions (14 CFR 23.1309, 25.1309, 27.1309, and 29.1309)—Component 
selection from the point of view of characteristics and performance and environmental 
qualification of these components contribute to this aspect. 

• Safe operation (14 CFR 23.1309, 25.1309, 27.1309, and 29.1309)—Failure modes and 
failure mitigation of the selected components contribute to this aspect [3‒6]. Reliability 
considerations are integrated in the demonstration of achievement of safe operation. 

The research thrust on COTS airborne electronic hardware (AEH) assurance methods addresses 
safe operation and supports the development of a comprehensive framework for COTS assurance. 
The framework includes: 

• The understanding of current and foreseen future use of COTS in AEH. 
• The description of safety issues and concerns. 
• The documentation of failure modes for these COTS and the relevance to AEH context. 
• The investigation of existing mitigation techniques and their effectiveness. 
• The development of objective criteria for determining the effectiveness of safety. 
• The determination of airworthiness assurance methods for AEH integrating the COTS 

under consideration. 

Previous research under Authority for Expenditure (AFE) Project 75 (COTS AEH Assurance 
Methods) documented 22 COTS issues and proposed a structure to address future COTS AEH 
assurance standards [7‒10]. Continuation of the research on the identified issues with COTS is 
currently allocated in part to a supplement to AFE Project 75 and to a phase 3 research task order 
under the Software and Digital Systems (SDS) Program, which focuses on commodity memories 
and embedded controllers [11]. This report is produced under the SDS Program and pertains to 
embedded controllers. Note that in the process of describing the COTS embedded controllers in 
AEH, considerations of intended function and operating conditions are integrated in the discussion. 
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1.2  PURPOSE 

This report is the second on the SDS research and addresses embedded controllers (also called 
microcontrollers). This report informs on applicability of safety assurance processes based on the 
characteristics of microcontrollers, their fault models, and mitigation means.1 More specifically, 
the following topics are covered: 

• The identification of the various types of embedded controllers that are being used and 
might be used in the near future by aerospace equipment manufacturers 

• The definition of categories for embedded controllers based on their characteristics 
• The identification of methods to categorize a given device into one of the defined categories 
• The description of the types of embedded controllers failure modes 
• The identification of issues and adequacy associated with the embedded controllers’ built-

in fault mitigation techniques for the above failure modes (if any) 
• The identification of additional potential internal and external fault mitigation techniques 

for the defined categories of embedded controllers 
• The investigation of how embedded controllers could be integrated within system safety 

analyses (e.g., fault trees) 
• The recommendation of software and AEH development assurance processes, including 

means of compliance 

In the context of investigating assurance methods for embedded controllers, the focus is on COTS 
microcontrollers, which embed a processing core with software, as opposed to COTS controllers, 
which do not have a software function. Therefore, this report uses the term “microcontroller.” 
Furthermore, the focus is on microcontrollers embedded within COTS products, executing not 
only protected code (from an intellectual property [IP] standpoint) but also providing hardware 
functions (e.g., memory controllers or input/output functions). 

Section 2 of this report discusses the identification and classification schemes for microcontrollers. 
Section 3 describes the fault model of microcontrollers at different abstraction levels and lists 
identified issues with these COTS devices. Section 4 investigates the effects of faults in 
microcontrollers and the mitigation techniques. Section 5 focuses on the applicability of assurance 
processes, to include system, software, and hardware; this section also consolidates the findings 
and recommendations resulting from this research effort. 

  

                                                 
 
1 Disclaimer: In this report, COTS components for which the primary target is the consumer electronics market may be qualified as exhibiting a 
level of quality that is insufficient for AEH quality requirements, especially for safety-critical applications. This statement does not mean in any 
way that manufacturers may be lax or incompetent. What is meant is that manufacturing and supply processes that are perfectly rigorous and 
appropriate for the consumer electronics market may not meet requirements for AEH application, which require a mandatory level of assurance. 
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2.  IDENTIFICATION OF EMBEDDED CONTROLLERS FOR AEH PURPOSES 

This section provides the context information for executing the overarching tasks of a safety 
process: the identification and description of failure modes associated with embedded controllers, 
the assessment of their effects, and the determination of mitigation techniques. 

The main challenge is related to the wide variety of embedded controllers, not only in terms of 
features but also in terms of intended functions. The objective of the following sections is to 
recommend a categorization scheme using characteristics that will be relevant in the context of 
safety assurance. 

2.1  CHARACTERISTICS OF EMBEDDED CONTROLLERS 

2.1.1  Definition and Architectures 

An embedded controller is defined as a microprocessor-based system that is built to control a 
function or a range of functions that resides in a larger mechanical or electrical system. An 
embedded controller is also referred to as a microcontroller. This definition is coherent with the 
scope of this report to consider controllers embedded in a larger COTS product. However, the 
proposed scope is wider. 

European Aviation Safety Agency (EASA’s) definition of a COTS microcontroller is consistent 
with the generic definition above; the definition is more specific because it includes controllers 
that embed several hardware functions interacting with the processing core executable code. CM 
SWCEH-001 [12] defines a COTS microcontroller as any integrated circuit that executes software 
in a central processing unit (CPU) (processing core) and that implements peripheral hardware 
elements. 

A generic microcontroller is described as a highly integrated component containing a single 
processing core, an internal memory, and programmable input/output peripheral interfaces and 
controllers (see figure 1). 
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Figure 1. Block diagram of generic microcontroller 

This figure illustrates some of the most common peripheral interfaces: general-purpose 
input/output, serial peripheral interface (SPI), peripheral component interconnect, and express. 

For a COTS product in general, the only available level of description is the one provided by its 
datasheet (e.g., block diagram, functional, and interface description), possibly complemented by 
additional data from the COTS supplier (e.g., users manuals and applications notes). This level is 
mainly a very first level of description (i.e., down to the strict necessary information for the user, 
at the system or software interface) to determine normal and proper functioning of the COTS to 
the desired behavior. For COTS microcontrollers in particular, the software interface is described 
through both the instruction set of the core processing portion and a set of control and status 
registers for the associated peripherals. 

The assessment of failure modes and mitigation mechanisms requires a more dysfunctional than 
functional analysis, which can then only be performed at the COTS device level but is based on 
the available description of the architecture in terms of input, functional blocks diagram, and 
output. With those restrictions, the failure modes and mitigation mechanisms can only be assessed 
at this first level of description. In addition, failure rates and fault coverage figures can only be 
estimated, possibly with the help of the COTS device supplier but with inevitable assumptions, 
which might be difficult to validate. 
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Consider specific instances to highlight the spectrum of embedded controllers. Figure 2 shows the 
block diagram of a MPC7447A, which is the fifth implementation of the fourth generation 
microprocessors from Freescale [13]. It is a standalone processing core. In comparison, figure 3 
shows the block diagram of a MPC8610, which is an integrated processor: This single chip replaces 
four chips. All core-to-peripheral connections are integrated on the die [14]. 

 

Figure 2. Block diagram of Freescale MPC7447A standalone core processing 
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Figure 3. Block diagram of Freescale MPC8610 integrated host processor 

The spectrum of available devices is significantly varied, and often the AEH designer and 
manufacturer need to work closely with the embedded controller supplier to ensure the availability 
of information that is required to support the development assurance processes. 

2.1.2  Microcontrollers Families 

The classification by family is provided as an example. It is specific to the microcontroller 
manufacturer and bears no impact on the assurance issue that is not covered by one or several of 
the criteria based on technical characteristics. 

• Atmel® AVR® family – tinyAVR®, megaAVR®, AVR XMEGA® 
• PIC family – PIC16F, PIC18F 
• ARM family – ARM7, ARM9, ARM11 
• Intel 8051 family – AT89s52, p89v51rd2 
• Motorola – 68HC11 

2.2  CRITERIA USED FOR CATEGORIZING MICROCONTROLLERS 

Categorization of COTS microcontrollers may be performed based on one or a combination of 
several of the criteria in this section. These criteria are currently being used, but they may not be 
relevant to the objective of integrating embedded controllers in the safety-assurance process. 
Section 5.4.1 discusses recommendations to remedy the classification issues related to complexity, 
criticality, and hardware-based criteria. 

2.2.1  Functionality or Usage 

This criterion pertains to whether the controller is dedicated to a specific function of a particular 
hardware or whether the controller is generic. Generic embedded controllers may perform the 
following tasks: 
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• Receiving and processing signals from controls (e.g., switches and buttons) 
• Powering on and off 
• Managing access control 
• Managing thermal controls (e.g., fan control, CPU throttling, emergency shutdown in 

response to over-temperature condition) 
• Controlling the indicator-light-emitting diodes 
• Managing battery power and battery charging 
• Allowing diagnostics and remote fault management 
• Performing software-commanded reset 
• Controlling the watchdog timer 

This criterion is key to the safety-assurance process, regardless of whether the functionalities are 
performed by software, hardware, or both. However, it is rare for this criterion to drive the 
classification. 

2.2.2  Complexity 

This criterion allows for differentiating controllers that are simple sequencers, perform arithmetic 
logic, or are reconfigurable. 

As a start, the following definitions are based on DO-254 and are used in the classification of 
microcontrollers: 

• Simple electronic hardware—A hardware device is considered simple only if a 
comprehensive combination of deterministic tests and analyses appropriate to the 
development assurance level (DAL) /item development assurance level (IDAL) can ensure 
correct functional performance under all foreseeable operating conditions with no 
anomalous behavior. 

• Complex electronic hardware – All devices that are not simple are considered to be 
complex. 

Note: An interpretation of the above definition for simple electronic hardware COTS is based on 
EASA CM SWCEH-001 and can be summarized as “the ability to verify by test on the physical 
device all requirements in all configurations, is a pre-requisite for a classification of a device as 
simple.” [12] 

A new category was introduced in EASA CM SWCEH-001 in addition to the DO-254 definitions 
for highly complex COTS microcontrollers. The definition invokes architectural specificities, such 
as number of cores, peripherals, or buses within the device. The practicality of such a definition 
may be questionable as the complexity gap is then highly dependent on the type of functionality 
provided by the COTS product and not on universally acceptable independent criteria. This might 
be the reason why only COTS microcontrollers will fall under this new category. As evolving 
technology will typically lead to an increase in complexity, other COTS products could eventually 
fall in that category. This classification has not been adopted by the FAA to date, the guidance for 
which is in reference [15], and the author of this report, as elaborated in section 5.4.1, instead 
recommends a classification that is less dependent on the microcontroller’s functionality. 
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The EASA COTS-AEH report [16] and system-on-chip research report [17] considered 
microprocessors to be standalone complex COTS. Simple microcontrollers can be defined as 
microcontrollers implementing simple peripherals around their core processing.  

Examples of simple interface peripherals include universal asynchronous receivers/transmitters, 
inter-integrated circuits, and SPIs. Examples of simple microcontrollers include Freescale 
MPC5567, the Texas Instrument C2000TM microcontroller series, or the older NXP LPC2119. 
Examples of complex microcontrollers include the Texas Instruments digital signal processor or 
Freescale MPC8610 (see figure 3).  

Categorization by complexity is generally performed via an assessment of the COTS 
characteristics, which requires an adequate description of the COTS architecture down to an 
acceptable level of functional block identification, and with respect to one or several generally 
accepted criteria. Such criteria include the observable behavior of the various internal functions.  

Categorization of COTS by complexity has always generated misunderstandings. 

2.2.3  Criticality 

Criticality, as reflected by the allocated DAL, is an input requirement flowed down from the 
system safety assessment. Although it cannot be modified, it is unlikely that compliance to the 
allocated DAL can be shown because the COTS design/development data may not be available.  

2.2.4  End-User Accessibility 

This criterion specifically addresses whether the end user can modify the controller’s instruction 
set or whether the user has access to the source code.  

2.2.5  Instruction Type or Set 

This criterion presupposes end-user accessibility and focuses on whether the instruction set is 
complex instruction set computer (CISC) or reduced instruction set computer (RISC). 

With CISC, the programmer can use one instruction in place of many simpler instructions. The 
RISC instruction set allows each instruction to operate on any register or to use any addressing 
mode and simultaneous access of program and data. RISC systems shorten execution time by 
reducing the clock cycles per instruction. CISC systems shorten execution time by reducing the 
number of instructions per program and having the hardware complete complex instructions. 

The selection of instruction type or instruction set has no impact on the assurance issues (e.g., 
safety impact, intended function) that the classification would help address. 
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2.2.6  Instruction Storage 

Embedded controllers typically have their own random access memory (RAM), independent from 
the memory for the main processing unit. The controller software may be stored in its own read-
only memory (ROM). 

This criterion allows for differentiating between controllers fetching instructions in an internal 
memory (i.e., embedded memory microcontroller) and controllers fetching instructions in an 
external memory (i.e., external memory microcontroller). Sub-criterion could consider the type: 
flash memory, electrically erasable programmable ROM, and static random access memory 
(SRAM). 

The integration of memory units within the microcontroller implies that a large amount of 
computation by the core processing unit is hidden to the systems with which it interfaces.  

An embedded microcontroller has all functional blocks on a chip: program, data memory, 
input/output ports, serial communication, counters, timers, and interrupts. An example of such 
structure is Intel® 8051.  

An external memory microcontroller has no program memory on a chip. An example of such 
structure is Intel 8031. 

This criterion plays a role in the assurance process, as instruction storage may be a source of issue. 
The following is an example: an embedded hardware controller that checks, or even corrects, a 
value during instruction fetching or RAM access. 

2.2.7  Memory Architecture 

This criterion allows for distinguishing between Harvard memory architecture microcontrollers 
and Princeton memory architecture microcontrollers. 

Harvard memory architecture microcontrollers have a dissimilar memory address space for the 
program and data memory in their processor. Princeton memory architecture microcontrollers have 
a common memory address for the program and the data memory in their processor. 

2.2.8  Internal Bus Width 

This criterion classifies microcontrollers based on internal bus widths: 4 bits, 8 bits, 16 bits, or 32 
bits. 

In microcontrollers with 8-bit internal bus widths, the arithmetic logic unit (ALU) performs the 
arithmetic and logic operations at specific precision and performance. Examples of 8-bit 
microcontrollers are Intel 8031/8051, PIC1x, and Motorola MC68HC11 families. 
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Precision and performance are increased in microcontrollers with 16-bit internal bus widths 
compared with 8-bit microcontrollers. The timer can also be longer. Examples of 16-bit 
microcontrollers are Intel 8051XA and 8096, PIC2x, and Motorola MC68HC12 families. 

Microcontrollers with 32-bit internal bus widths are typically used in automatically controlled 
devices, including implantable medical devices, engine/power control systems, office machines, 
and various appliances. Examples include Intel/Atmel 251 and PIC3x families. 

This criterion primarily covers the performance aspects (precision and speed); although increased 
performance may allow for more critical applications, this particular criterion is qualified by the 
author and technical reviewers as having no impact on safety assurance issues. The usage criterion 
is retained instead for safety impacts. 

2.3  USE OF MICROCONTROLLERS IN AEH 

2.3.1  Current Usage 

Microcontrollers are currently used in aircraft to perform the following functions: 

• Receiving and processing signals from controls in the cockpit control panels 
• Powering on and off in power distribution units (standalone or embedded in the chassis of 

avionics systems) 
• Managing thermal controls (e.g., fan control, CPU throttling, emergency shutdown in 

response to over-temperature conditions) typically embedded in the avionics chassis 
• Controlling the indicator-light-emitting diodes on faceplates and cockpit panels 
• Managing battery power and battery charging 
• Controlling the watchdog timers on built-in test (BIT) programs (e.g., power-on BIT) 

 
Microcontrollers are associated with NAND flash memory for all its applications in AEH. 

2.3.2  Foreseen Future Usage 

The foreseen usage of microcontrollers in AEH revolves around an increasing complexity in the 
control and monitoring functions. The microcontrollers are already available and embedded in the 
chassis of avionics systems. They control temperature, power sequencing, and power distribution. 
For the monitoring function, foreseen use includes the capability to log data in the internal memory 
and communicate failure conditions with the external environment using hardware discrete signals. 

The control function also comes into play when allowing external systems to connect and transfer 
of information between two remote systems. This growing functionality supports integrated 
diagnostics and remote fault management. The most common fault management strategy is to 
perform software-commanded resets. Microcontrollers perform this function. 

In association with non-volatile memory storage, microcontrollers will take over the boot-loading 
capability and access control to data stored in memory for more complex applications than are 
currently used. 
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3.  FEARED EVENTS AND FAILURE MODES OF EMBEDDED CONTROLLERS 

As previously discussed in this task order, the following are the failure modes identified in the 
context of abstraction level, from the most abstract description to the least abstract: 

• Functional abstraction level 
• Logical abstraction level  
• Physical abstraction level 

The functional abstraction level contains both a system-level and a hardware-level transfer 
function representation. At this level, the microcontroller cannot be investigated independently 
from its intended function. The notion of usage domain is attached to an investigation at this 
abstraction level using the system-level transfer function. When considering the hardware-level 
transfer function, the focus of the failure mode identification is on the delivery of a coherent signal 
to the different software levels. Functional fault detection and mitigation means for the hardware-
level transfer function viewpoint to cover the service provided by hardware to connected hardware 
or to software. 

The logical abstraction level addresses the output of the microcontroller from its logical content 
viewpoint. This level is the most adapted to investigate failure modes of microcontrollers and to 
identify the possible fault detection and mitigation means. 

At the physical level, the microcontroller’s outputs are separated, and the signals are detailed down 
to the physical characteristics, including voltage, amperage, and timing. This abstraction level is 
too low to effectively describe the failure modes of a complex COTS microcontroller (e.g., because 
of the number of input/output pins). However, this level of abstraction is useful in particular cases, 
such as to characterize a failure mode identified at a higher level (e.g., bit stuck-at value, voltage 
oscillations, timing drift) or to estimate the effectiveness of detection/mitigation means (e.g., 
monitoring of a signal). This abstraction level is also typically used for faults caused by 
environmental factors, such as single-event effects, electromagnetic pulse, current, or voltage 
fluctuations. 

Most of the literature addressing microcontrollers and compliance with safety requirements relates 
to the automobile industry and demonstration of compliance with ISO 26262 standard 
requirements [18]. The study of microcontrollers—even complex—is often limited to hardware-
related issues, but there is a trend in the latest publications to consider software-related safety 
issues. 
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3.1  GLOBAL FAULT CLASSIFICATION 

Faults are typically classified into two broad categories: 

• Permanent faults 
• Transient faults 

The effects of permanent faults are non-reversible. Based on this consideration, aging effects can 
be included in the permanent fault category, whereas intermittent faults can be included in the 
transient fault category. Reference [19] considers specifically faults caused by electromagnetic 
interferences and adds the class of static faults: The pulse width is sufficient to deviate the 
microcontroller’s state parameters from the rated values, but no abnormal behavior is observed at 
the system level. 

Errors are classified in two categories: 

• Soft errors can be recovered from, and typically with, a system restart. 
• Hard errors require replacement of affected components. 

Faults on a target system (e.g., microcontroller) can be investigated from three different levels: 

• Hardware faults: covers the physical device, the logic, and the register-transfer level (RTL) 
• Software faults: applies to operating system (OS) (kernel and middleware) and application 
• Operation faults: covers faults committed by the user when interacting with the system 

Furthermore, hardware faults can be tagged according to two categories of causal factors: 

• Random hardware failures, which include faults caused by the environment 
• Systematic failures or faults related to defects introduced during the design, the 

manufacturing process, and (visible or not) after production testing. Systematic failures can 
also be introduced by the operational procedures or documentation deficiencies. 

For COTS products and microcontrollers, design errors can be introduced because of the 
complexity of the design process; they may include: non-instantiated features, non-documented 
features interfering with documented features, or erroneous behavior under conditions that were 
not tested by the COTS manufacturer (related to usage domain). Manufacturing errors may include 
contamination of the silicon, micro-cracks in wafer, etc. 

3.2  ISSUES IDENTIFIED WITH COTS MICROCONTROLLERS 

FAA COTS AFE75 report [7] and EASA COTS-AEH report [16] have identified several issues 
with microcontrollers. This section summarizes the issues and how they could influence the 
selection of characteristics in the proposed classification scheme (see section 5.4.1). 
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3.2.1  Issues with Derating 

Microcontrollers are subject to derating practices from the device manufacturer. These practices 
impact voltage, frequency, and input/output current. Impacts on the device architecture include 
down binning, power-aware design, and process scaling. 

3.2.2  Sparing Reliability 

With process scaling and reduction in feature size in general, the behavior of the material changes 
so that the percentage of on-chip defects increases. One of the architectural solutions to this issue 
is the implementation of on-chip redundancy. For microcontrollers, this physical redundancy may 
lead to the following situations: 

• A microcontroller may be implemented using two microprocessor cores with one of the 
cores being defective. 

• A microcontroller embedding two cores, one of which is only slightly defective, may 
exhibit margins to failure much shorter than anticipated in the design. 

3.2.3  Embedded Controllers for Flash NAND Memories 

As previously discussed, flash (NAND) memories must be accompanied by an embedded 
controller. The trend in these devices is with integrated solutions, in which the NAND memory, 
the input/output, and the memory controller are tied together. 

In these architectures, the built-in mitigation technique is generally an error-correcting code (ECC) 
that is resident in the microcontroller. The usage domain and the reduced accessibility to the ECC 
may cause concern to the AEH manufacturer when considering: 

• Whether the reliability of the device properly addresses the AEH avionics application 
lifetime. 

• Whether a specific wear-leveling algorithm is implemented, and it is unknown to the AEH 
manufacturer. 

Wear-leveling methods are used to extend the flash-device life expectancy. These devices are 
limited to a finite number of program erase cycles. The usage model of the flash memory built by 
the device manufacturer determines whether wear leveling is needed to extend the device’s life to 
be compatible with the expected embedding system’s usage life. Wear-leveling algorithms arrange 
or store data in a manner that sector erasures are distributed more evenly across the memory array. 
The system embedding the flash memory uses a flash file system to perform its read and write 
operations to logical-sector addresses. The wear-leveling algorithm is often part of the flash file 
system and remaps logical-sector addresses to different physical-sector addresses in the flash array. 
Wear-leveling remapping can be dynamic or static. The algorithm tracks the sector usage to 
identify the best area to write data. For the AEH manufacturer, it is important to understand the 
flash usage model and the impact of the wear-leveling algorithm on the memory array 
arrangement. 
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3.2.4  Handling of Errata 

As a consequence of the device complexity, exhaustive testing is no longer achievable prior to 
production. Therefore, the focus is heightened on the importance of continued validation while the 
device is in use.  

The microcontroller manufacturer, the AEH manufacturer, and the end user must work together to 
support and track this validation. A priori knowledge by the AEH manufacturer of the policy on 
errata (if any) from the microcontroller manufacturer is recommended. For issues regarding in-
service data collection, the reader is directed to the report on service history produced under the 
SDS program as part of Task Order 3 [20]; previous research on the service history is also available 
from FAA reports [21–24]. 

3.2.5  Intellectual Property 

The presence of IP has an impact on the performance of development assurance process steps. In 
particular, the presence of IP may impact the availability of verification artifacts and the 
availability of the source code for the software assurance reviews. 

3.2.6  Spectrum of Microcontroller Devices 

Whereas the previous subsections reported on COTS AEH issues, this section focuses on 
controllers embedded into COTS products (i.e., the focus is shifted from COTS controllers to 
COTS products embedding controllers). 

For microprocessors hosting avionics applications, the applicability of software assurance 
processes using DO-178C standard and hardware assurance processes using DO-254 was well 
known. 

However, when faced with the large spectrum of microcontroller devices, the applicability of 
guidance material—whether it pertains to the use of DO-178C, DO-254, or other assurance 
guidelines (e.g., ISO 26262)—is less clear [16]. 

This issue is further complicated by the fact that, in some instances, the device manufacturer does 
not reveal to the AEH manufacturer the existence of a microcontroller in the integrated component. 
When the determination of the microcontroller’s presence is made, it is often late in the product 
lifecycle so that a redesign or modification to the architecture has a cost and a schedule impact. 

If the issue is investigated from the angle of assurance, it presents the problem of how to address 
the impact of a faulty controller embedded in a COTS product. If the controller is faulty, then its 
intended function is not correctly performed: This is a system-level safety assessment issue from 
the viewpoint of the product (whether the fault is identified to the hardware die, the controller 
hardware functions, or the software executing on the controller). If the assessment of such 
controller would address the embedded hardware functions at the same time as the software 
executing on its core, the issues reported in the AFE75 report [7] section 2.17 “Embedded 
Controllers” may be handled differently. 
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3.3  GENERIC FAILURE MODES AT LOGICAL LEVEL FOR COTS PRODUCTS 

Reference [16] was used in a previous report on COTS commodity memory to present a generic 
failure model at a logical level. That model is applicable to microcontrollers because they provide 
information transfer (payload or control). This failure model can be related to commonly used 
failure modes (see table 1). 

Table 1. Relation between microcontroller failure modes and commonly used failure modes 

Microcontroller Failure Model Derived From [16] Commonly Used Failure Mode 
Loss of message Loss 
Untimely transfer of message Erroneous transmission in time 
Abnormal sequence of messages Out of sequence 
Untimely or forbidden transition of information 

Erroneous data 
Impossible transition of information 

This model was recommended because it is easily identifiable with the abstraction level to which 
it corresponds and because of its ability to demonstrate that the model is complete at this 
abstraction level. 

Failure modes that are associated with the software-hardware interface are defined based on the 
services provided by hardware for software: 

• Inability to get program instruction or data 
• Erroneous instruction or data retrieved 
• Latency in data delivery (drift in maximum execution time) 

3.4  FAULT MODEL AT PHYSICAL AND LOGICAL ABSTRACTION LEVELS 

Under the patronage of ARTEMIS joint undertaking, the Verification and Testing to Support 
Functional Safety Standards (VeTeSS) program investigated fault types and common cause faults 
found in literature to compile a fault catalogue and develop a reliability knowledge matrix [25]. 
As the objective of the fault catalogue was to provide the necessary information to model and 
inject faults in simulations to select the most adapted validation and testing methods, the catalog 
primarily addresses hardware and the physical abstraction level. 

3.4.1  Identification of Failure 

In addition to the fault classification in section 3.1, a panel of experts selected from the participants 
to the VeTeSS program provided a recommendation to add the following concepts to support 
identifying common-cause failure initiators in microcontrollers’ digital components [25]: 

• Locality—allows distinguishing between local effects (e.g., gate oxide breakdown) and 
wider effects (e.g., energy pulses) 

• On-chip propagation—indicates how a fault may propagate in the hardware (e.g., via 
substrate, on the power lines) 
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• Locality after propagation—allows for assessment of the locality factor based on the ability 
of the fault to propagate (e.g., a locality assessed as “local” may be reassessed as “global” 
if the fault propagated through the power lines). 

As a result, the fault catalogue is structured according to the following parameters: causes, physical 
effect and physical effect type, consequence, locality, on-chip propagation, and locality after 
propagation. Because microcontrollers contain different types of basic components and embed 
different functions, the fault catalog addresses the effects at: 

• Basic component level—SRAM, flip-flops, logic, and NAND flash memory 
• Functional part level—core voltage, clock system, analog-to-digital converter, 

input/output, and reset system 

Based on the causal factors, knowledge of the fault and its effect is more relevant at the basic 
component level (e.g., single-event effects) or at the functional part level (e.g., electromagnetic 
interference). 

3.4.2  Major Findings for Fault Models at Logic and RTL Levels 

The following sections summarize the findings and conclusions of various research reports, which 
analyzed existing literature [25, 26]. The reader is directed to these reports for more details. 

3.4.2.1  Permanent Faults 

The most common manifestation of hardware permanent fault at the transistor level is stuck-
on/stuck-off or short/open. It is less common and more difficult to test for bridging, which refers 
to a combination of short and open lines. A catch-all fault type is denoted indetermination and is 
due to either a short in the logic circuit outputs or an opening in the inputs. 

The microcontroller logic circuit can suffer from delays associated with a permanent modification 
of the parasitic capacitances at the transistor level. 

3.4.2.2  Intermittent Faults 

Faults may first manifest as intermittent before becoming permanent, especially if caused by wear-
out. Intermittent faults may occur when certain conditions are encountered (e.g., environmental, 
functional, or at the interface) that, combined with operation of the device close to its limit 
characteristics and performance, will trigger faults, revealing a temporary failure or malfunction 
at the level of the embedding system. 

Intermittent faults may become permanent when limit characteristics and performance are 
exceeded, preventing any proper functioning even within normal operating conditions They may 
also become permanent when abnormal operating conditions combined with limit characteristics 
and performance lock up proper functioning beyond robustness features. 

Fault models are therefore the same as those for permanent faults. 
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3.4.2.3  Transient Faults 

These faults include soft errors and single-event upsets. As they do not introduce a physical defect 
in the circuit, they cannot be located spatially. Their duration is limited. The combination of these 
two characteristics contributes to the difficulty in modeling them for verification and robustness 
testing purposes. 

The most common fault models for transient faults include bit-flip (for storage components), pulse 
(in the combinational logic), indeterminism, and delay. 

High-frequency pulses were found to have a high potential of common cause fault between the 
functional parts of a microcontroller and their safety mechanisms, particularly lockstep. Reference 
[19] recommends that vulnerability assessments against electromagnetic pulse be performed at 
system level using system safety assessment methods. 

Alpha particles and single-event effects were found to largely contribute to soft errors, which are 
the dominant type of faults in modern technologies for microcontrollers. 

The fault models recommended for use in verification and robustness testing activities (and listed 
in ISO 26262 [18]) include stuck-at, bridging, opens, and bit-flips. 

4.  MITIGATION TECHNIQUES FOR EMBEDDED CONTROLLERS 

The mitigation strategy is based on the determination of effects from the failure modes identified 
in the previous section. Detection mechanisms can be defined based on what they apply to: 

• Detection of failures at the output: 

- Direct observations of faults at accessible points of reference using absolute or 
relative value (fault naturally occurring or injected for test) 

- Remote observations—a fault occurs at some point of control in the device and its 
effect is checked at a distinct point of observation (fault naturally occurring or 
injected for test). 

• Monitoring of abnormal behavior using microcontroller’s internal resources. 

4.1  SUMMARY OF EFFECTS OF HARDWARE FAULTS 

Fault manifestations at the various abstraction levels for a microcontroller are well detailed in 
technical publications addressing the representativeness of fault-injection techniques used to verify 
the design and test for robustness. The issue is that the injection is primarily performed at RTL 
and logic levels—the literature is much sparser for the functional abstraction level—at which top-
down system safety analyses typically apply (e.g., ARP4761 [27]). 

Reference [26] investigated the propagation of faults within a PIC16X microcontroller in the 
presence of various transient and permanent faults. The faults targeted any combinational signal 
of the ALU and the general clock line of the microcontroller at the electron level. The propagation 
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was observed in the microcontroller’s registers as a corruption for both user registers (accessible 
to software) and hidden registers (not accessible by software).  

The notable results are summarized as: 

• Most of the faults manifested as bit-flips. This observation substantiates that the most 
common mitigation technique in microcontrollers is an ECC. The second-most-common 
manifestation is indetermination with the preponderance in permanent faults. 

• The percentage of propagated faults and their multiplicity2 increases with the fault duration 
for transient faults. Therefore, if the clock frequency increases, the percentage of transient 
faults that propagate it is higher, with an almost-linear dependency between them, whereas 
there is no dependency on the clock frequency for permanent faults. 

• The microcontroller workload impacts the percentage of propagated faults. Complex 
workloads produce a higher sensitization of faults, for both permanent and transient faults. 
The workload does not modify the fact that the most common manifestation of fault is bit-
flip. 

• Many hidden registers are affected by faults at the logic level. Consideration of user 
registers only for mitigation is not sufficient. 

From the registers, the next step is to investigate the propagation from the corrupted registers to 
the system behavior (e.g., disruption of the execution of the system workload), using the fact that 
most faults manifested as bit-flips in the registers. The conclusions of the study [26] are: 

• Lower failure percentages were observed when the ratio of the fault duration over the time 
to execute the workload is lower. 

• The use of the register plays a significant role in the level of sensitization by the workload. 
Examples of critical registers include the status register (containing the ALU flags), the 
instruction register, the constant generator registers, and storage registers for immediate 
data of ALU calculations. If a register is critical (regardless of whether it is a user register 
or a hidden register) and sensitized by the workload, the impact of a fault will be higher. 
In microcontrollers, most of the critical registers are hidden registers; therefore, these 
registers are likely to play key roles in the fault propagation. 

4.2  SUMMARY OF EFFECTS OF SOFTWARE FAULTS 

The literature on faults applied to microcontrollers primarily covers physical faults (hardware) and 
concludes that most of these faults result in bit-flip. Besides a few studies, it is more difficult to 
find investigations of software faults. However, the first causes of actual loss of function in COTS 
microcontrollers can be tied to software faults [29]. 

The following applies to COTS microcontrollers that run complex applications and not to 
microcontrollers running small and simple programs. Fault models (e.g., orthogonal defect 

                                                 
 
2 Multiplicity reflects the average number of registers that a single fault is able to corrupt. The longer a fault lasts in time and the larger the number 
of registers being corrupted by that one fault; the bigger the multiplicity. 
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classification) support the classification of software faults that occur during the development phase 
of the OS. This particular model was developed by IBM. 

Examination of real cases indicates that, although software faults are permanent in nature, the 
errors they generate are similar to those caused by transient faults. For example, the activation of 
the fault is dependent on the state of the system. 

The most critical element is the kernel because it gathers the functional elements providing the 
various services necessary to run the user applications (e.g., an application programming interface 
is the most important interface type to provide user services) and to manage the hardware. The 
drivers used to communicate with the physical environment are also critical, as they run in the 
same context as the kernel and are implemented based on the services provided by the kernel. One 
of the issues is that error-detection mechanisms are frequently omitted for performance reasons. 
The consequence is that a driver may be able to corrupt the kernel internal state. Device drivers 
are the primary source of fault, and these faults can propagate to the OS [29‒30]. 

Using investigation of software faults in the program execution via fault injection as an example, 
the failure conditions can be categorized as: 

• Time-out—The fault causes the program execution time to change in such a way that it 
cannot be completed in the specified time. 

• OS exception—The fault causes an OS exception. 

4.3  OVERVIEW OF BUILT-IN MITIGATION IN MICROCONTROLLERS 

In this section, the built-in mitigation techniques in microcontrollers to protect against 
microcontroller failure are discussed. Mitigations (e.g., wear-leveling or ECC) implemented by 
the microcontroller to protect an external memory (e.g., NAND flash memory) are not considered. 

Microcontroller caches are generally protected by ECC or parity. Error reporting and handling are 
configurable in the CPU error interrupt enable register. The AEH manufacturer must pay attention 
to that configuration. Single errors are corrected by the ECC on the transmitted data. Course of 
action has to be taken by the CPU under dedicated privilege mode (either supervisor or hypervisor, 
depending on the processor type). The OS is in charge of correcting the error in the cache and 
restoring the error-reporting register. 

Freescale’s microcontrollers allows for checking ECC or the parity bit’s correct behavior by 
injecting faults in memories. This capability is key to testing the validity and the correct setting of 
the integrity-protection mechanism before each operation. This capability is typically implemented 
in power-on built-in self-tests. In parallel, periodic flushing of the cache provides mitigation to 
single-event, upset-induced failures. 

4.3.1  Memory Management Unit 

A memory management unit (MMU) performs a fault-detection activity and typically restarts the 
component as a one-size-fits-all fault-response strategy. An MMU is a safety feature that is 
designed to contain the fault caused by a crash of the microcontroller software. However, the 
majority of microcontrollers are not fitted with MMUs. This is because small programs were run 
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in the early days of microcontrollers. Currently microcontrollers often include large address spaces 
and run complex applications. 

An MMU would provide graceful degradation (e.g., by detecting access violations) if a task 
attempted to access a protected chunk of memory outside of the one to which it is allocated. The 
ARM Cortex-M7 includes a memory-protection unit, which is a crude version of an MMU. Its 
design allows eight memory regions that are hardware protected from interfering with each other. 
The access to each region is controlled. Slowly, MMUs are offered on microcontrollers, and the 
real-time OS adds code to manage it, but it is not yet widely implemented. 

In an AEH context, the MMU can be used to implement partitioning of software functions with 
different DALs (as applicable). However, because the initial use of MMU was not to contain 
software errors, but rather to organize the virtual memory, it is insufficient to implement robust 
partitioning, as expected for avionics functions. 

4.3.2  Control Flow Checking 

Control flow checking (CFC) is one of the most implemented techniques to detect the occurrence 
of control flow errors. These errors constitute the majority of transient faults in electronic devices 
(microprocessors and microcontrollers) in remote terminal units (part of most industrial control 
systems) when operating in harsh environments and submitted to electromagnetic interferences, 
power supply disturbances, radiations, or high operating temperatures. The effect of such faults is 
a single bit flip. 

Reference [31] summarizes the CFC techniques that have been used on microcontroller-based 
industrial control systems. These techniques are classified in three groups: hardware-based, 
software-based, and hybrid. Hardware-based techniques employ a redundant hardware, such as a 
watchdog (processor or timer) or lock-stepping, to monitor the behavior of the main processor. 
Software-based techniques employ software redundancy to monitor specific signatures indicative 
of errors in the program execution. The criteria for selection of the hardware-based technique or 
the software-based technique include flexibility, cost, overhead, and maintainability. Hybrid 
techniques represent a compromise between hardware and software CFC techniques to balance 
cost and overhead. 

Signature monitoring mechanisms require extracting an abstract of the program before the 
system’s runtime as a model of correct execution. Signatures from that abstract are assigned to the 
program and stored. During runtime, signatures are generated in real time and compared with the 
stored signatures. A control flow error is detected when a disagreement between the signatures 
occurs (requiring additional instructions in the code) and is reported by the error handler. For more 
information on signatures, the reader is directed to [31]. 

Examples of software-based CFC techniques include CFC using software signatures, ECC with 
assertions, relationship signatures for CFC, intra-inter block control flow checking, and software-
based CFC. Examples of hybrid techniques include CFC using branch tree exceptions or a 
software-based error-detection technique using encoded signatures (SWTES). In SWTES, the 
software-based component monitors the behavior of a program using an encoded signature, 
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whereas an on-chip microcontroller timer is used as a watchdog timer to protect against program 
crashes; it is experimentally evaluated on an Atmel MCS51 microcontroller. 

4.4  DESCRIPTION OF ISSUES WITH BUILT-IN MITIGATION TECHNIQUES 

Whereas usage errors are addressed by specification robustness, random failures and systematic 
failures in design and manufacturing process are covered by fault detection and redundancy-based 
mitigation means. 

4.4.1  Accessibility 

The executable code in microcontrollers is generally developed by the device manufacturer and is 
likely not user-modifiable. Consequently, the information and access to the built-in mitigation 
technique implemented on the device may not be documented at all or may not provide sufficient 
details for the AEH manufacturer to produce the required artifacts for assurance. 

The issue of accessibility is extended to the products of verification and validation, including 
parameter data items and executable code.  

4.4.2  Management of Errata 

Design errors are documented in errata, whether accessible to the community or via a non-
disclosure agreement between the microcontroller manufacturer and the AEH manufacturer. 
Design errors do not “age” during the product lifetime. They should be tested, discovered, and 
mitigated prior to the product entering into service. It is relevant for the AEH manufacturer to 
control that the most up-to-date errata information is included throughout the design and not only 
the errata that exist at the start of the development activity. 

4.5  IDENTIFICATION OF POTENTIAL ADDITIONAL MITIGATION 

In the past, for safety-related applications, external mitigations have focused on the robust 
deactivation of COTS features. For example, microcontroller input/output complex features have 
been limited to ground maintenance. Standalone microprocessors with simple input/output have 
been used for in-flight safety-related applications but with strong internal limiting mechanisms 
preventing the triggering of the microcontrollers’ full features. Such widely used architectural 
mitigation consists of implementing a control path that is independent from the functional path in 
which the microcontroller is involved. 

Other architectural mitigations include the implementation of an independent means that would 
detect the microcontroller failure by diagnosing its output. This method is called fault symptom 
detection. 

5.  RECOMMENDATIONS ON ASSURANCE PROCESSES 

The notion of embedded controllers ties with a system-level approach, rather than a distinct 
software-level or hardware-level approach. Software and hardware components within a 
microcontroller are highly integrated and interdependent. This section focuses on the application 
of assurance standards, guidance, and system safety methods. Based on the applicability, 
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recommendations are made for integration of microcontrollers in safety processes and 
identification of means of compliance. 

5.1  APPLICABILITY OF EXISTING STANDARDS AND GUIDANCE 

5.1.1  Applicability of Hardware and Software Assurance Standards 

The following higher-level regulatory documents are used to introduce the applicability of 
software and hardware assurance standards: 

• EASA CM-SWCEH-001 explicitly addresses expected activities for COTS products in 
DAL A, B, and C applications in which microcontrollers can be embedded. 

• FAA AC 20-152 invokes DO-254 [1] to explicitly apply to custom micro-coded or 
programmable complex devices but currently does not address COTS microcontrollers. 

5.1.1.1  Arguments for Applicability of DO-254 

This assurance standard addresses design of hardware components. It is applicable to embedded 
controllers because it explicitly covers design assurance of COTS products. 

5.1.1.2  Arguments for Applicability of DO-178C 

EASA CM SWCEH-001 recommended that the development assurance of microprocessors, core 
processing part of the microcontrollers, and highly complex COTS microcontrollers (e.g., core 
processing unit) will be based on the application of DO-178B to the software they host, including 
testing of the software on the target microprocessor/microcontroller/highly complex COTS 
microcontroller. 

No such equivalent exists within FAA’s current regulatory and guidance material documents. 

5.1.1.3  Other Industry-Based Standards 

ISO-26262 [18] part 5 “Road Vehicles – Functional Safety – Product Development: Hardware 
Level” is the automotive standard for functional safety. This document can be of interest because 
it introduces development-assurance concepts relevant to complex COTS architectures and 
addresses mitigation by design of hazards. Microcontrollers are specifically discussed in part 10 
of Annex A. 

5.1.2  Applicability of System Safety Standards 

5.1.2.1  Arguments for Applicability of ARP4761 

This guideline document provides a toolset of assessments to determine the failure modes, set 
safety objectives for the maximum allowable probability of occurrence of the failure conditions 
associated with the failure modes, and assess the architecture for mitigation. The assessments are 
scalable to microcontrollers with little modification. Nevertheless, this standard is more a catalog 
of techniques for safety analyses than guidance for development assurance; the encompassing and 
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governing guideline for system development assurance is ARP4754A [32], discussed below, and 
should bear a revision effort. 

5.1.2.2  Arguments for Applicability of ARP4754A 

This industry standard guideline addresses development issues with complex embedded systems. 
This document is not limited to digital avionics systems. Because the definition of systems in 
ARP4754A is fairly wide, it can be considered potentially applicable to microcontrollers. It would 
benefit from a review for clarification on applicability and a revision to address microcontrollers 
explicitly. 

In particular, if the microcontroller is embedded within another COTS product (e.g., the embedded 
controller of a non-volatile memory storage device or hard-drive), the system’s approach needs to 
be applied to characterize the microcontroller’s intended function, functional failure, and severity 
classification.  

This standard is currently under revision by SAE committee S-18. 

5.1.2.3  Other Industry-Based Standards 

ISO-26262 [15] part 4 “Road Vehicles – Functional Safety – Product Development: System Level” 
is the system-level assurance guideline. 

5.1.3  Details Within EASA CM SWCEH-001 

Section 9.3 of EASA CM SWCEH-001 categorization scheme for COTS products, including 
microcontrollers, is based on the following criteria: 

• Criticality 
• Complexity 
• Relevance of service history 

The microcontrollers’ classification scheme is discussed in section 9.3.1 of EASA CM SWCEH-
001 as an activity to be conducted for DAL A through C. The result of the activity is a classification 
into simple microcontroller, complex microcontroller, or highly complex microcontroller.  

The assessments to be performed as part of this activity represent the current practice for 
microcontroller classification within an EASA context. Note that the certification memorandum 
lists 16 activities relevant to the assurance of microcontrollers. The scope in this white paper is 
limited to the activities and criteria relevant to the classification of microcontrollers. 

5.1.3.1  Criticality: Allocated DAL Criteria 

Allocated DAL activity is derived in a top-down approach using SAE ARP4754A [27] guidance 
and DO-254 appendix B.2 [1]. The assurance activities in EASA CM SWCEH-001 section 9.3.11 
through 9.3.13 [12] are tailored for microcontrollers for which the IDAL is allocated as A through 
C or which failure mode contributes to failure conditions of CATASTROPHIC to MAJOR, 
regardless of the quantity of relevant service history. 
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5.1.3.2  Complexity: Functional Architecture Assessment 

Using the definitions in section 2.1.1, the objective of the assessment is to classify the 
microcontroller as simple, complex, or highly complex. This assessment is applicable for 
microcontrollers for which IDAL is allocated as A through C or which failure mode contributes to 
failure conditions of MAJOR to CATASTROPHIC, regardless of the quantity of relevant service 
history. 

The assessment investigates the functional architecture of the microcontroller, particularly: 

• The description of the functions performed by the device. 
• The description of the functional blocks. 
• The types of interfaces between functional blocks. 
• The description of data processing performed within these blocks. 
• The number of functional modes or states for a state machine. 
• The type of functional modes. 

The assessment is performed to determine whether verification by test can be executed on the 
physical device for all requirements in all configurations. The artifact for this assessment can be a 
documented engineering analysis of the device’s logic and design. 

A microcontroller can be classified as simple if: 

• The findings of the previous assessment demonstrate that exhaustive verification by test is 
achievable. 

• The device’s logic can be comprehended without the aid of analytical tools (this criterion 
relates to a “measurement” of simplicity). 

Note that other criteria for the assessment of complexity have been proposed, such as documented 
engineering analysis of the device’s logic. 

If the microcontroller cannot be classified as simple, it is complex. The microcontroller can be 
classified as highly complex if any of the following are implemented in the device: 

• More than one CPU is embedded, and they use the same bus (which is not strictly separated 
or which uses the same single port memory). 

• Several controllers of complex peripherals are dependent on each other and exchange data. 
• Several internal buses are integrated and are used in a dynamic way (e.g., a dynamic bus 

switch matrix). 

5.1.3.3  Relevance of Service History 

In an EASA context, service history for microcontrollers is related to documenting:  

• Target market (e.g., microcontrollers are very common in automotive systems). 
• Operating environment. 
• Criticality of usage. 
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• Total order of magnitude of operating time (classification into low or sufficient product 
service experience for DAL A through C). 

• Evidence of stability and maturity of product (e.g., using rate and type of modifications, 
rate of occurrence of errata). 

These criteria are consistent with the criteria for considering hardware product experience when 
using alternative methods per DO-254. 

5.1.4  Current Practices 

The criteria for classifying a microcontroller as simple, complex, or highly complex are solely 
hardware based and related to the device itself. To paraphrase the criteria in the EASA CM 
SWCEH-001, a microcontroller will be classified as: 

• Simple when demonstration can be made of an exhaustive verification by test of the device. 
• Complex when the “simple” cannot be demonstrated, but at least some interconnections 

between the microcontroller’s block components are simple. 
• Highly complex when the exchanges between blocks internal to the microcontroller are 

complex. 

5.2  APPLICABILITY OF SAFETY ANALYSES 

The safety process is applicable to COTS products, as discussed in reference [16]. The complexity 
of systems and functions performed by microcontrollers challenges existing safety standards in 
such a way that a unified analysis framework is needed to regain manageability of the assessment 
(e.g., IEC 61000-5-9) [19]. However, the issue of accessibility of data and assurance artifacts 
impacts the reasonably achievable depth of the system-/subsystem-level safety analyses. In 
particular, ARP4761 appendix A for the Functional Hazard Assessment (FHA) and appendix B 
for the Preliminary System Safety Assessment require input information on the fault model. 
Although different implementations exist in the papers surveyed for this research, a common 
concept emerges: the combination of a top-down analysis to bind the scope of interest for a 
complementary bottom-up analysis providing the quantitative information on the failures. This 
approach has been recommended in the context of different COTS: multicore processors, 
commodity memories, and, in this report, microcontrollers. 

5.2.1  Fault Tree Analysis  

The qualitative analysis of the vulnerability of a complex microcontroller to electromagnetic pulse 
is performed using a fault tree structure in [19]. The structure function derived from the fault tree 
(i.e., probability of failure) is directly compatible with the electromagnetic topology used in all 
vulnerability assessments. Additionally, mitigation measures at system level, such as shielding, 
can be readily inserted as AND-gates in the fault tree analysis (FTA). In this specific example, a 
Bayesian network is used to quantitatively assess the fault propagation model from the 
combination of the fault tree and the electromagnetic topology using the causal relationship. The 
vulnerability is characterized by the joint probability of system failure and electromagnetic 
interference. 
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Reference [19] provides a quantitative analysis of the probability of vulnerability for three fault 
propagation scenarios over the three vulnerable nodes of the Bayesian network and computing for 
each joint probability. In the first scenario, an electromagnetic pulse propagates to the cabling 
interface and breaks down the first vulnerable node (485 integrated circuit) leading to the failure 
of the transmission subsystem. In the second scenario, the electromagnetic pulse interrupts the 
power supply of the second vulnerable node (DC/DC converter), which causes a hard failure in 
the microcontroller. In the third scenario, the electromagnetic pulse triggers the third vulnerable 
node (solid state relay), which causes a soft failure in the microcontroller. The joint probability 
expresses the probability of the electromagnetic interference and the probability of failure of the 
component. This is illustrated in the fault tree structure as an AND-gate or as a converging 
structure in the Bayesian network.  

A thorough system-level assessment is time-consuming and costly. The application of a system-
level method, such as FTA, allows identification of the most significant and measurable effects 
and informing on failure paths for which further, more detailed, investigation is needed. For 
failures with environmental sources, the vulnerability function can be determined from the 
probability of system failure derived from a system safety method, such as FTA, and the stochastic 
topology of the environmental factor. 

5.2.2  Failure Mode and Effect Analysis  

The determination of reliability information, such as failure rate, and the refinement of the failure 
model call for a failure mode and effect analysis (FMEA). The performance of an FMEA or failure 
mode, effects, and criticality analysis are predicated on the availability of reliability information 
and effectiveness of mitigation to verify that the design meets the safety objectives. Only a 
functional FMEA or failure modes and effects summary can be performed at the available level of 
abstraction of a COTS microcontroller. 

Considering the guidance of EASA CM-SWCEH-001 (see the table in section 9.3.13), this activity 
is justified only for highly complex COTS microcontrollers with low product service experience 
and DALs A or B, as it often implies a high cost. An additional issue is that FMEAs, based on the 
device knowledge that they require, are at best difficult to obtain and typically remain the property 
of the device manufacturer. As a fallback in case the required level of details is not available, the 
functional FMEA can be performed using hypotheses on the generic internal components, 
including MMU, ALU, branch processing unit, etc. 

5.2.3  Link With Usage Domain Analysis 

Usage domain analysis is an integral part of safety assessment applied to COTS products. In the 
context of microcontroller, the usage domain should be analyzed for functions that may be 
inactive, for the configuration piece of the microcontroller, and as part of the errata assessment. 

5.3  ISSUES TO TRACK FOR ASSURANCE PROCESS 

Based on the existing research reports on COTS for AEH [7, 16, 17, 33] and specific issues listed 
in section 3.2, assurance issues can be grouped into the categories detailed in the sections 5.3.1 
through 5.3.4. 
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5.3.1  Availability of Documentation 

The availability of documentation, or lack thereof, on the embedded controller from the device 
manufacturer presents an issue for demonstration of compliance with safety-assurance processes. 
In particular: 

• The details of the ECC implemented in the microcontroller (e.g., type, coverage, and 
limitations) 

• The device’s response to soft errors (e.g., error recovery, containment strategy, and reset 
mode) 

• The number, user-accessibility, and coverage of the configuration modes 

5.3.2  Robustness Verification (Fault Injection) 

The content of this section is derived from concerns, methods, and tools investigated in the 
automotive industry to answer safety assurance requirements in the context of compliance with 
ISO 26262 safety standard [18]. Robustness verification has become a fundamental step in the 
certification process, and it is a top contributor to cost and schedule. The increased complexity in 
microcontrollers has aggravated the potential impact of the robustness-verification process on the 
production stages. The traditional use of fault-injection techniques applied at the gate has become 
impractical from a schedule standpoint. The industry is investigating increasing the level of 
abstraction by introducing simulation-based verification. such as RTL and instruction-set 
simulators [34]. 

The lack of information on the processor has a direct impact on the ability to perform meaningful 
fault injection. In particular, the majority of the nodes usable for injection are missing from the 
processor model. For example, typical instruction set simulator-based fault-injection experiments 
include injection into the file register because it is required by the safety standards for 
demonstration of compliance. In the context of microcontroller, these experiments cannot be used 
to estimate the failure rate because the node is not present in the model. It is therefore impossible 
to estimate the probability that a fault occurring in any microcontroller net or gate propagates to 
the register file. 

As abnormal behavior can be caused by faults in both user registers and hidden registers, the 
capability to inject faults in hidden registers requires the application of varied and complementary 
techniques. For example, the popular software-implemented fault-injection techniques should be 
complemented with other injection techniques to access hidden registers. 

5.3.3  In-Use Validation (Testing in General) 

The in-use validation may be the primary source of errata, reliability, and deficiency reports. It is 
conditioned upon the implementation of adequate monitoring on the microcontroller. Typically, 
these devices host much fewer monitors than a microprocessor would, based on the safety 
assurance requirements. This issue rises during development when establishing the coverage of 
BIT and monitoring capabilities at last recently used level against safety-derived requirements, at 
validation prior to fielding (e.g., when verifying reliability estimates/predictions), and in service. 
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5.3.4  Assurance of Software Code and Qualification of Tools 

This topic is fairly rich regarding microcontrollers in the context of AEH assurance but also 
reported for ground vehicle assurance. This concern grew with the allocation of more complex 
applications to microcontrollers and would benefit from further research. The challenges include 
issues with availability of code to perform assurance reviews and the lack of information on the 
development processes implemented by the device manufacturer. It also covers associated issues 
with the tools that were used to generate the code. These tools are likely not to be qualified. 

5.4  SUMMARY OF FINDINGS AND RECOMMENDATIONS 

5.4.1  Classification of COTS Microcontrollers 

For complex commercial off-the-shelf (COTS) in general and complex COTS microcontrollers in 
particular, the top objective of a structured development process is the recommended path to 
certification compliance to be used to ensure the correct functional performance under all 
foreseeable operating conditions with no anomalous behavior. When these conditions of 
exhaustiveness are met, the device would be classified as simple, according to the DO-254 
definition. This chicken-and-egg issue can be resolved by identifying the classification as simple 
or complex as resulting from an a priori assessment process used consequently to direct the 
development process with the adequate design/development assurance strategy. The a posteriori 
objective is then to target 100% correct performance with a known behavior in all conditions. 

Given the unlikely availability of development artifacts on the COTS microcontroller to match the 
allocated DAL, assurance methods and related activities based on a birds-eye view of the device 
could be tailored to the DAL. Examples of such tailoring would impact the level of analysis or 
testing effort to detect the potential defects or errors in the COTS microcontroller. 

5.4.2  Analyzing a Device for Usage Domain 

The current classification of microcontroller devices is strictly based on the device itself and, 
therefore, does not call for an analysis of the device’s usage domain. However, when considering 
the issues that were raised with respect to assurance of microcontrollers, an analysis of the device’s 
usage domain seems appropriate. 

The assurance activities include: 

• The definition of the COTS microcontroller usage domain. 
• The verification of the usage domain. 
• The validation of the usage domain. 

If the microcontroller is analyzed based on its usage, the following findings can be useful to the 
avionics manufacturer: 

• The device’s block components can be more or less complex themselves. If a block is not 
used or is deactivated, it can be ignored in the assurance assessment for the device based 
on the usage domain analysis that provides assurances that the block cannot be activated 
during operation. 



 

29 

• The interaction between the processing core and the other functions performed by the 
microcontroller can be specifically analyzed. The objective of this analysis is to justify that 
the microcontroller’s behavior with respect to the application software is not affected by 
the other components (this would also justify the discarding of unused or deactivated 
blocks from the assurance investigation). 

• If the above analysis between the processing core and the other functions shows no 
interdependence, the core can be verified using DO-178C and ARP4754A processes, 
whereas the rest (i.e., mostly hardware) can be verified using a DO-254 process. 

• If there is interdependence, the recommendation may be to analyze the entire device against 
DO-178C and ARP4754A criteria.  

After the analysis on usage is performed, a complex microcontroller (per EASA CM SWCEH-001 
hardware criteria) may turn out to be completely manageable. The use and scope of applicability 
of DO-178C and DO-254 processes can be justified via the usage-based analysis. As a side note, 
a justification based on component’s usage usually increases confidence in the processes and 
activities to be implemented. 

For microcontrollers that have highly complex hardware-based classifications, the following 
additional activities are identified: 

• Analysis of the device’s configurability to exclude complex parts that are not used 
• Determination of the domain usage 

5.4.3  Application of Assurance Processes 

The increasing level of complexity in microcontrollers raises the following issues that can be 
addressed by the application of assurance processes: 

• The level of control on the device (overarching concern for COTS) 
• The interdependencies between the different hardware and software components of the 

device, which challenge the notion of control over the useful part in the traditional way 
• Because the primary function of a microcontroller is to execute code: 

- Microcontrollers that only contain a processing core are adequately covered by DO-
178C assurance process and ARP4754A system integration process. 

- When a microcontroller’s architecture exhibits interdependency between the 
processing core and other components, the adequate coverage described above can 
be questioned, either based on software or system integration. 

If the coverage by DO-178C or ARP4754A can be questioned based on the properties of the 
architecture (interdependencies in particular), then what is actually questioned is the “way of 
working” for processing cores. Addressing this issue from a multispecialty (e.g., software, system, 
and hardware) viewpoint is complicated. 

For this recommendation, consider a microcontroller implementing hardware functions in addition 
to the processing function (i.e., a complex or highly complex microcontroller using the EASA 
definition). 
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The controller that is deeply embedded within a COTS product would require the application of 
ARP4754A (or a system-level safety process) to characterize its intended function(s), its 
contribution to the COTS functions, the impact of the loss of the microcontroller’s functions, and 
its impact at the COTS product level. 

Once these characteristics are defined, the device can be classified from a hardware standpoint, 
targeting the reachable level of test. Finally, if the processing core is allocated the safety-critical 
function of the COTS product, an equivalent level of safety needs to be determined in the absence 
of artifacts that assurance processes have been implemented. However, finding the equivalent level 
of safety for the software using service history is not simple [20]. 

The assurance activities to be performed include: 

• Hardware-hardware integration. 
• Hardware-software integration. 
• System-level integration and verification. 

The application of system-level safety assessment techniques is straightforward. Based on the 
classification of the effects of microcontroller failures, mitigation in the architecture can be 
proposed. As discussed in section 4, various mitigation techniques exist that address specific 
failure modes of microcontroller components. Such mitigations include redundancy, which, 
depending on the severity classification of effects, may introduce requirements for dissimilar 
hardware or software diversity. 

5.4.4  Obtaining COTS Microcontroller Data and Documentation 

COTS microcontroller data (e.g., datasheets, user manuals, application notes, and associated errata 
sheets) are available from the COTS supplier to a certain extent. The same remark applies to 
additional literature and “how-to” information pertaining to the use of the COTS product. 
Regardless, such data may not be sufficient, in terms of level of details, to demonstrate correct 
behavior in all foreseeable conditions. In addition, the avionics manufacturer must rely on the 
COTS supplier to ensure that the data reliably reflect the actual characteristics and behavior of the 
device. One specific problem is with proprietary data retained by the COTS supplier for a variety 
of reasons. 

To overcome the issue, the following approach is recommended: 

1. Capture the COTS microcontroller artifacts as formalized requirements, interface 
descriptions, and design data (see note) from all available sources of information. 

2. Incorporate the above COTS microcontroller artifacts within the overall design at the 
circuit board assembly level, either via traceability or matching analyses. 

3. Perform the related requirements-based validation and verification activities, as if the 
COTS microcontroller were designed with a requirements-based process. 

Note: Design data may include configuration settings, activation of used/unused functions, internal 
control, or monitoring mechanisms. 

Other activities include the formalization of a process to address COTS errata: 
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• Capture of errata sheets from the COTS supplier 
• Performance of an impact analysis of the errata sheets 
• Definition of a process to follow-up on the errata 

To address the configuration management process, the following activities should be considered: 

• Monitoring the COTS microcontroller configuration 
• Managing the change notices related to the device 
• Performing the impact analysis on the change notices 

5.4.5  Means of Compliance 

When COTS microcontrollers provide safety-critical functions (i.e., when they contribute to 
catastrophic or hazardous events), fault detection and mitigation activities are recommended 
regardless of their classification (e.g., simple, complex, or highly complex) and irrespective of the 
product service history. 

The proposed process relies on different patterns and methods including: 

• The choice of a failure model at logical abstraction level. 
• A preliminary black box description focusing on microcontroller output that includes: 

- The description of the outputs to be considered in the failure mode and effect 
assessment. 

- The analysis of the selected output failure modes. 
- A list of input/output level integrated detection/mitigation mechanisms. 
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This step provides the internal failure mode from the point of view of the output signals. 

• A second step at grey box breakdown level that covers: 

- The selection of an architecture. 
- The description of blocks to be considered in the analysis. 
- The analysis of failure modes at block level. 
- A list of internal detection/mitigation mechanisms. 

This step provides insight on the microcontroller’s internal failures that can impact various outputs. 

The grey box approach appears important to understand as well as possible the internal behavior 
of the microcontroller and its logical structure (block breakdown). However, its physical structure 
remains generally nonaccessible to the airborne electronic hardware manufacturer. The analysis of 
various microcontrollers suggests that few patterns generate most of the systematic failures. 

The use of tests and the determination of mitigation means can be split into three categories: 

1. Mechanisms relying on internal mitigation means of the microcontroller 
2. Mixed mechanisms relying on detection means internal to the microcontroller and on 

external mitigation means 
3. Mechanisms fully relying on architectural means for detection and mitigation 

Establishing a comprehensive failure model is key, as a missed failure mode may cause the 
invalidation of the analysis at both black-box and grey-box levels, and the judgment on the 
detection mechanisms’ coverage. At grey-box level, the selection of the microcontroller internal 
architecture also appears to be a tactical choice for the relevance of the failure analysis. 

System-level safety analyses apply to microcontrollers and include functional hazard assessment, 
system safety analysis, fault tree analysis, and failure mode and effect analysis. 

  



 

33 

7.  REFERENCES 

1. RTCA Report. (2000). Design Assurance Guidance for Airborne Electronic Hardware. 
(DO-254). 

2. RTCA Report. (2011). Software Considerations in Airborne Systems and Equipment 
Certification. (DO-178C). 

3. FAA. (1988, June). Advisory Circular 25.1309-1A. System Design and Analysis. 
(updated with an Arsenal version). Washington, D.C.: Government Publishing Office. 

4. FAA. (2011, November). Advisory Circular 23.1309-1E. System Safety Analysis and 
Assessment for Part 23 Airplanes. Washington, D.C.: Government Publishing Office. 

5. FAA. (2014, July). Advisory Circular 27.1309 (within AC 27-1B). Certification of 
Normal Category Rotorcraft. Washington, D.C.: Government Publishing Office. 

6. FAA. (2014, July). Advisory Circular 29.1309 (within AC 29-2C) Certification of 
Transport Category Rotorcraft. Washington, D.C.: Government Publishing Office. 

7. FAA Report. (2016). AFE75 COTS (AEH) Issues and Emerging Solutions Report. 
(DOT/FAA/TC-16/57). 

8. FAA Report. (2011). Handbook for the Selection and Evaluation of Microprocessors for 
Airborne Systems. (DOT/FAA/AR-11/2). 

9. FAA Report. (2011). Microprocessor Evaluations for Safety-Critical, Real-Time 
Applications: Authority for Expenditure No. 43 Phase 5 Report. (DOT/FAA/AR-11/5). 

10. FAA Report. (2010). Microprocessor Evaluations for Safety-Critical, Real-Time 
Applications: Authority for Expenditure No. 43 Phase 4 Report. (DOT/FAA/AR-10/21). 

11. FAA, Software and Electronic Section – COTS AEH Assurance Methods – Phase 3 
(Commodity Memory and Embedded Controllers), Delivery Order #4 Statement of 
Work, 01 August 2014. 

12. EASA Report. (2012). Certification Memorandum. Development Assurance of Airborne 
Electronic Hardware. Iss. 01, Rev. 01. (CM SWCEH-001). 

13. Freescale Semiconductor, (2006, January). MPC7447A Technical Data. Retrieved from 
nxp.com. 

14. Freescale Semiconductor, MPC8610 Datasheet/NXP. (2016, April, 17). Retrieved from 
nxp.com. 

15. FAA Order 8110.105, Simple and Complex Electronic Hardware Approval Guidance, 
Change 1 (2008). 



 

34 

16. EASA Report. (2013). COTS-AEH – Use of Complex COTS (Commercial Off-The-
Shelf) in Airborne Electronic Hardware – Failure Modes and Mitigation. 
(EASA.2012.C15). 

17. EASA Report. (2008). SoC Survey Report – Safety Implications of the use of system-on-
chip (SoC) on Commercial Off-the-Shelf (COTS) Devices in Airborne Critical 
Applications. (EASA.2008/1). 

18. ISO-26262:2009: Road Vehicles – Functional Safety. 

19. Congguang, M., Canavera, F. G., Cui, Z., & Sun, D. (2016). System-level vulnerability 
assessment for EME: From fault tree analysis to Bayesian networks – Part II: Illustration 
to microcontroller system. IEEE Transactions on Electromagnetic Compatibility, 58(1), 
188‒196. 

20. FAA Report. (2016). Final Report for Software Service History and Airborne Electronic 
Hardware Service Experience in Airborne Systems. (DOT/FAA/TC-16/18). 

21. FAA Report. (2001). Commercial Off-The-Shelf (COTS) Avionics Software Study. 
(DOT/FAA/AR-01/26). 

22. FAA Report. (2001). Review of Pending Guidance and Industry Findings on Commercial 
Off-The-Shelf (COTS) Electronics in Airborne Systems. (DOT/FAA/AR-01/41). 

23. FAA Report. (2002). Software Service History Handbook. (DOT/FAA/AR-01/116). 

24. FAA Report. (2002). Software Service History Report. (DOT/FAA/AR-01/125). 

25. Analysis of Fault Types and Common Cause Faults/VeTeSS: Verification and Testing to 
Support Functional Safety Standards. (2015, February, 2012). Deliverable D5.2. 
Retrieved from www.vetess.eu. 

26. Dependability Benchmarking project, Fault Representativeness report ETIE2, IST-2000-
25425, June 2002. 

27. SAE International (1996).  Guidelines and Methods for Conducting the Safety 
Assessment Process on Civil Airborne Systems and Equipment. (ARP4761). 

28. Lee, I., Iyer, R.K., “Software Dependability in the Tandem GUARDIAN System,” IEEE 
Transactions of Software Engineering, 21(5): 455-467, 1995. 

29. DOT/FAA/AR-02/118, Study of Commercial Off-The-Shelf (COTS) Real-Time Operating 
Systems (RTOS) in Aviation Applications. 

30. DOT/FAA/AR-03/77, Commercial Off-The-Shelf Real-Time Operating System and 
Architectural Considerations. 



 

35 

31. Rajabpour, N., Segaghat, Y., “A Hybrid-based Error Detection Technique for PLC-based 
Industrial Control Systems,” 2015. 

32. SAE, “Guidelines for Development of Civil Aircraft and Systems,” ARP4754A, December 
2010. 

33. FAA Report. (2017). Commercial Off-the-Shelf (COTS) Airborne Electronic Hardware 
(AEH) Assurance Methods – Phase 3 – Commodity Memories. (DOT/FAA/TC16/40). 

34. Espinosa, J., Hernandez, C., Abellla, J., De Andres, D., & Ruiz, J.C. (2015). Analysis and 
RTL correlation of instruction set simulators for automotive microcontroller robustness 
verification. Proceedings from the 2015 DAC Conference, San Francisco, CA. 

 



 

A-1 

APPENDIX A—GLOSSARY 

This report uses the following definitions of technical terms and architectures:  

Commercial off-the-shelf component (COTS) [RTCA/DO-254] 

Component, integrated circuit, or subsystem developed by a supplier for multiple customers, 
whose design and configuration is controlled by the supplier’s or an industry specification 

Complex hardware item [RTCA/DO-254] 

A hardware item is identified as simple only if a comprehensive combination of deterministic tests 
and analyses appropriate to the design assurance level can ensure correct functional performance 
under all foreseeable operating conditions with no anomalous behavior. When an item cannot be 
classified as simple, it should be classified as complex. 

Complex COTS microcontroller [EASA CM-SWCEH-001] 

Any integrated circuit or electronic hardware item that executes software in a specific core area 
(central processing unit) and implements complex peripheral hardware elements, such as 
input/output bus controllers 

Highly complex COTS microcontroller [EASA CM SWCEH-001] 

A microcontroller should be classified as highly complex as soon as it has any of the following 
characteristics: 

• Multiple central processing units are embedded, and they use the same bus (which is not 
strictly separated or which uses the same single-port memory). 

• Several controllers of complex peripherals are dependent on each other and exchange data. 
• Several internal buses are integrated and are used in a dynamic way (e.g., a dynamic bus 

switch matrix). 

Simple COTS microcontroller [EASA CM SWCEH-001] 

Any electronic item that executes software in a specific core area and implements simple peripheral 
hardware elements, such as universal asynchronous receiver/transmitter (UART), analog to digital 
(A/D) converter, and digital to analog converter (D/A). 

COTS controller [derived from COTS microcontroller] 

Any integrated circuit or electronic hardware device that does not execute software in a specific 
core processing unit but implements miscellaneous electronic hardware functions. 

Note: A COTS controller can be assessed as simple (e.g., UART, A/D, or D/A converters; pulse-
width modulator) or as complex (e.g., controller area network bus interface, direct memory access, 
memory management unit, input/output controllers). 
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Intellectual property [derived from EASA System-on-Chip report] 

In electronic devices, an intellectual property (IP) or intellectual property core (IP core) is an 
electronic function designed to be reused as a portion of a device (e.g., COTS, application-specific 
integrated circuit, or programmable logic device). 

The following terms are introduced based on discussions with specialists of packaging who 
emphasized the need to be precise. 

Chip – Synonym of die 

Component – The complete component embedding the die in a package 

Die – The piece of semiconducting material constituting the integrated circuit 

Device – Elementary structures such as transistors, capacitors, etc. 

Electronic module – Electronic module, or simply module, for which there is no ambiguity; refers 
to a part of airborne electronic hardware equipment that contains electronic components. An 
electrical module may be a mezzanine card, an electronic board, a set of related electronic boards, 
a computer, etc. 

Interconnect – Metal layers connecting the devices within the die 

 

The following definitions of failure-related terms are used in this report: 

Hard error – A hard error implies that the affected element is definitively broken, regardless of 
the effects. 

Intermittent effect – An effect that is sometimes present, sometimes absent, with no limit in time 

Permanent effect – An effect that is continuous in time 

Soft error – A soft error means that the affected element currently exhibits a bad behavior but is 
not broken and will resume working after being refreshed. 

Transient effect – An effect that exists only for a limited duration (it will exist again only if it is 
triggered again) 
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